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1. Introduction 

Laser-pumped cesium beam atomic clocks have been under development over the last 20 years. 
Optical pumping allows for the utilization of essentially 100% of the atoms in the beam, " improv- 
ing the clock signal-to-noise ratio over that of similar beam clocks using magnetic state selection by 
factors between 5 and 10. Those optically pumped clocks are typically laboratory instruments, with 
no limitation in size or weight. The last several years have seen feverish activity in the development 
of cold-atom clocks that exploit laser cooling techniques to implement variations of Zacharias' 
fountain clock proposal, ' achieving very narrow clock transition linewidths by lengthening the 
microwave interrogation interval. "Cold-atom" devices intended for use in space are also under 
development. '   Those devices are fairly complex, and, in principle, their basic design requires 
cyclic interrogation. 

Our objective is to develop a novel cesium beam physics package that will use optical techniques to 
combine the high signal-to-noise ratio achievable by optical pumping and beam brightening with the 
narrow linewidth allowed by a slow atomic beam, while operating in a CW manner. We further con- 
strain ourselves to designs that can be realized in a compact, robust package suitable for space appli- 
cations. Our approach differs from others in that we use a cold-atom source that provides a continu- 
ous beam. This will enable continuous interrogation of the physics package, eliminating the 
enhanced impact of local oscillator noise on atomic clock stability caused in cyclic interrogation 
clocks by the Dick effect. 



2. The Cold-Atom Beam Source 

The cold beam source, schematically shown in Figure 1, consists of a magneto-optic trap (MOT) 
formed with a single circularly polarized laser beam from a 150-mW a-DFB diode laser directed into 
a right-angle conical reflector.    The symmetry center of the magnetic field generated by a set of 
antihelmholtz coils lays on the axis of the conical reflector and becomes the center of the MOT. 
Polarization changes upon reflection, combined with the change of sign of the magnetic field at the 
center of the trap, provide the three-dimensional 0   and a  counterpropagating light fields required 
by the MOT. 

The reflector is a 5-cm-dia OFHC copper cylinder with a diamond-machined conical inner surface 
and a protected gold reflective coating of rms surface roughness < 5 nm. At the apex of the cone, 
there is a 1-mm orifice that creates a "dark column" with no retroreflected light. Atoms are pushed 
out of the MOT by the incident laser beam, forming a low-velocity, intense source (LVIS) of cold 
atoms.    The LVIS approach results in a continuous atomic beam. 

The effective capture radius of our MOT is about 1.5 cm, and the capture velocity is about 20 m/s. 
The MOT operates on saturated cesium vapor at room temperature; under those conditions, the 

Figure 1.     Schematic diagram of the cold cesium 
beam source, showing the antihelmholtz 
coils, the conical reflector, the incident 
and reflected light, the trapping region, 
and the output atomic beam. 



expected MOT loading rate is about 108 atoms/s. Since the MOT losses are dominated by transfer to 
the LVIS beam (and not by collisions), we expect the beam flux to be also about 10 atoms/s. The 
mean speed of the cesium atoms pushed out of the MOT through the 2-cm-long "dark column" will 
be about 10 m/s, and the velocity spread for a 0.5-cm-dia MOT will be about 3 m/s. 



4. The Cold Beam Clock 

Our proposed realization of the CW cold beam cesium atomic clock physics package is schemati- 
cally illustrated in Figure 2. The LVIS reflector will be placed at the source end of the cesium beam 
tube (CBT), with a suitable cesium reservoir. The antihelmholtz coils will be placed outside the 
CBT, and a conventional graphite collimator will provide a differential pumping orifice, limit the 
cesium background pressure away from the LVIS source, and also provide some shielding against 
MOT light. 

Immediately after the graphite collimator, a transverse laser-cooling region, slightly tilted with 
respect to the LVIS axis, will collimate, brighten, and bend the atomic beam. The bending of the 
beam will reduce the microwave resonance light shift caused by LVIS light entering the Ramsey 
cavity. We are investigating several dark-state transient cooling schemes that would perform the 
optical pumping state preparation of the beam simultaneously with the collimation and bending. 
Alternately, the state preparation step could come after the collimation and bending step. After state 
preparation, the intense, slow beam of atoms in the F = 3, mF= 0 state will enter a Ramsey cavity 
similar in size and configuration to those used in commercial cesium beam clocks. 

If an additional reduction in the amount of fluorescent light entering the microwave cavity is 
required to improve the frequency stability of the device, a short inhomogeneous magnetic field 
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Figure 2.     Schematic diagram of the compact CW cold-beam cesium atom 
clock beam tube. Some obviously needed components such as the 
cesium reservoir, ion pump, cesium getters and light baffles have 
been omitted for clarity. The bending angle of the atomic beam 
(as well as of the beam tube) is exaggerated for clarity. 



region can be used for further bending of the atomic beam. In this case, magnetic bending can be 
accomplished very easily (the atoms are moving slowly) and without significant beam loss (the beam 
is in a single magnetic state and has a narrow velocity spread). 

After traversing the cavity, atoms will be detected by laser-induced fluorescence. With shot noise- 
limited detection of the 10 atoms/s LVIS beam, we expect a signal-to-noise ratio of 10 . For a mean 
atomic speed of 10 m/s and a 20-cm Ramsey interaction length, the clock transition linewidth will be 
about 50 Hz, for a Q of about 1.8 x 10 . With those parameters, we estimate that a white frequency 
noise clock stability o (x) = 1.1 x 10" /VT will be achievable. 

A single 150-mW DBR diode laser will provide the multiple beams required for trapping and 
repumping the Cs atoms in the LVIS, collimating and bending the Cs beam in the CBT, and detect- 
ing the atoms after interrogation. The laser will be offset-locked to a cesium vapor resonance cell. 
All beams will be fiber-coupled, and electro-optic modulators will provide sidebands with the 
required offsets, as shown in Figure 3. 
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Figure 3.   Schematic diagram of the fiber-coupled compact laser 
system for the clock, using a DBR laser source. OI: opti- 
cal isolator. EOM1.EOM2: electro-optic modulators. 
PD: photodetector. Cs: reference Cs vapor cell. The 
detection laser beam is omitted for clarity. 



5. Conclusion 

We have discussed the source of a slow, bright cesium atomic beam, and its application to a pro- 
posed cold beam cesium atomic clock operating in cw fashion. The beam source has been built and 
tested. 
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